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General View of Machine Learning Problems
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The resourcesand processingpower of computers have
steady growth, facilitating accumulation and storage of
hugedataarrays,in natural or digitalformats. Thereappear
giantdata centersintendedfor accumulationandlongterm
storage of these data. And the following question arises
immediately which operations can be applied to data,
excepttheir storage?

IN1991G. PiatetskyShapirdormulatedthe conceptof
Data Mining (DM) which wasto integrate the methods of
mathematicalstatisticsand probability theory within a user
friendlyinformationtechnologyenvironment

In 2002 first issue of the Journal of Data Sciencewas
published,where it wasintroducednew scientificdiscipline
Data Scienceg(DS) It wasintendedto integrate all sciences
wheredataarise

In 2008 Nature editor C. Lynch prepared a specialissue
dedicatedto the big data problem,formulatingthe concept
of Big Data (BD) with its 3V attributes (volume, velocity,
variety) It was assumed to develop an information
technology environment with processingmethods for the
large arraysof numerical,audio, video and text data that
possesshe 3V attributes.

The physical core of all concepts involving data is a
supercomputerimplementingcomputationalalgorithmsfor
big data arrays handling and knowledge extraction To
succeedpne hasto makesomehypothesesandto learnthe
computer using data attributes. Therefore, Machine
Learning(ML) proceduresand algorithmsplay a key role in

DMandDS andBDconcepts
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Uncertainty

Errors
Omissions
Validity
Different scales

Models

- Class

Y = Ax - Structure
- Parameters

y(t) = [ w(t —D)x(1)dr

yln] = Xw[n —m] ® x[m]

Real problems which are solved bydgliocedures

occur inuncertain environment It concernglata.

They are obtained with errors and omissions. Different
arrays of data often have different scales and they are
not completely measured. Also there exists a problem
of representative sampling. As a result it turns out that
data cannot be considered as valid.

Second source of uncertaintynsodels Model design
and parameterization represent subjective procedures
depending on an individual knowledge of researchers.
It is necessary to choose a model class (linear or
nonlinear, static or dynamic, etc.), its structure and
mathematical description, basic parameters.

Sq applying MEprocedures we have to take into
accounthigh uncertaintyin real problems.

It is necessary to simulate uncertainty somehow. Here
we are using a general trend in this figldtochastic
simulation.




Uncertainty in ML and RMLprocedures
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In the Ml=procedures there applied
deterministic parameters and data
which sampled from universe with
hypothetically defined probabilistic
properties. Minimizing of empirical risk
gives optimakstimates of parameters
under used data.

Data
In the RMEprocedures there applied

random parametersof interval type

and data withrandom errors Optimal

estimates oparamter®) _tasd@rrors Q()
are defined by maximization of

information entropy.

Classification problem
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No hypotheses
only real data

P*(a), Q"(&) are entropy-optimal
PDFs of parameters and errors
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Structure of RMEprocedures

Input data X
Output data Y
with errors —
random noises =

Random vectors &
of noise with PDF

Q&)

Model with
random

parameters with
PDF P(a)

Ensemble of
random vectors
with PDF

P(a),Q(E)

Structure of ML-procedure includes blocks Data, RPIVI and RIVIL-A. Block Data is
a source of input X and output Y data. The observation errorsin output data are
modeled by a set of random independent vectors = with unknown PDF Q(Z).
The block RPM includes the model with random parameters a. There exists a
PDF P(a) of the parameters. The optimal PDF parameters P*(a) and noises

Q* () are defined in the block RML-A by entropy conditional maximization.
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Matrix

X =[xM, .., x9]
x)eRjels
Sliding matrix

U) _ ' -
X = [xU=P), .., xU)]

p-const,j=1,s

xl(f.—P) x{])
x,?'p) x,?)
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RML:-procedure- Data

xl(s)

x,(ls)

There are two data arrays, the first being treated
as the input one with a matrix X = [x(, ..., x()]
and the second as the output one with a matrix
Y = [y, ..., y©)]. Here the vectors belong to
appropriate spaces, x) € R", y0) € R™ and s
denotes the number of measurements
(observations) for the input and output.

Certainly it is assumed that there exists a
connection between them. Suppose that the input
array contains exact data, whereas the output
one contains data with interval-typeerrors,i.e.,
known ranges. The output data errors will be
characterized by a random noise matrix

Z =D, . £9]. Here the random vectors

{U),s = 1, s are independent with the independent
components.

The probabilistic properties ofthe noises are
characterized by the probability density functions
(PDFs) of their components qg) ({E)). We believe
that the PDFs represent continuously
differentiable functions. By defining in some
sense appropriate PDFs of the noises, it is

possible to generate the random vectors {U) with
these PDFs, thereby constructing an ensemble

&9 of the random vectors {U).

Ensemble of random vectors £U)
)
2

N 29
Z 51

Matrix
Y =[yW, ...,y®)]

Vectors

yhD eR™jeTs

Errors
== [ED, ., )]

Random and independent
vectors of interval type

O eE) =18 @)  kelm

- . _ (')
£ e EO) = U EU
j=1

PDF of components
q,E’)( ’EJ'))
PDF of random vector
QW (sW) = ﬁqg)( g))
k=1
PDF of random matrix

0@ = [ (:9)
j=1




RML:-procedure- Randomized Parametric Model (RPM) (1)

| SU)[QU)(E)]
x| epy | PP

a, P(a) PO[P(a), @V (®)]

The RPM includes random parameters of interval type. They are characterized by
the random vectora € R™ with independent components:

a; € A; = [a;,a]], i=1r; ac€A=[a,a').
The probabilistic properties of the parameters are characterized by the PDFs
p;(a;). By assumption, these functions possess continuous derivatives. Due to

independence, the joint PDF takes the form

P(a) = ﬁ pi(a;)

In general case, the input and output data have a dynamic relationship. So the
output data observed at moment j depend on the input data observed on some
historical intervalj — p,j — p + 1, ...,j. This relationship is described by a non-

random vector functional ﬁ(XNE} | a, P(a)) with random parameters a. The output
vector of RPM
y9 =0xY | a,P()).
As 1) is a random vector with PDF P(a), then the output of the RPM is an
ensemble Y@ [P(a)] of the random vectors §() for each observationj = 1, s:
YO (P(a)) = 0(xY | a,P(a)), j=1s.
The errors in the output data are modeled by an ensemble €9 (@Y (£1)) of the

random vectors ¢ with the PDF Q@) (¢U7), which is added to the ensemble of
the RPM output:

POP@),QVEM) = ax |ap@) +£PQPED),  j=Ts
Disposing of the PDF P(a),Q% (¢1Y)), itis possible to generate the ensemble GV

forj =1,s, e.g., to perform randomized forecasting or to predict different
numerical characteristics using well-known methods of mathematical statistics.

g [P(a)] is an ensemble of
random vectors yU) of RPM output

W) [QU)(E)] is an ensemble of
random noise vector £U)

P [P(a), Q(j)(E)] is an ensemble
of random vectors 7) of
observations of RPM output




RML:-procedure for Dynamic RPM (1)

o 5
0(xPa,P(@)

x(t)

The RPM is described by the following functional monomial of

degree R:
R p
y(j) = AR1kR) 5 =K —KR)

h=1 (ky,...kp)=0

The components of the ny,-vector xU=%1--=kn) gre the
lexicographically ordered h-products for the components of the
vectors xU=%1) . xU=kn) The random matrices A(1--kn) with
interval type elements have the form

(gker) (Fegky)
a4 Qe
(kyvokn) =
A (egker) Uepmky) |7
m,1 mnp

Functional O (Xéj)|a, P(a)) is confinuous on the set of
continuously differentiable functions

w, [1]
x (1) wolnl F—=\[/ ()
ST _
waln] |~
R-degree

These matrices contain random independent interval-type
elements of the form The set of the matrices

Ay = {A¥r-kn), (ky, ..., ky) = 0,p}
There exists the PDF P,,(A;), h = 1,R.
The ensemble of the observable RPM output consists of the
random vectors

R
pO) = Z vP@) +ED,  j=Ts.
h=1

where
P

v,?) (A) = ACksken) o G—Fes,emnj—kR)

(Ky,mrkp)=0

The noise vectors ), j = 1, s are random and independent with
the PDF Q) (&0)),j =1, 5.




RML:-procedure- Randomized Parametric Model (RPM) (2)

Ensemble V()

meansquare vector
® meancube vector

® mean forth degree vector
@® mean vector
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7
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The k-mean vector m®)(j | P(a), Q¥ (gD )
will be applied as a probabilistic
characteristic of the ensemble

VD (P(a), V(DY)

The ensemble V) (P(a), Q}g) (£U))) consists of an array of the
random vectors

v @ (p(a)'QU)(SG))) = yD(P(a)) + ED(QW(¢10)),
j=1,s.

Define a vector M8 (j | P(a), Q) (¢ 1)) using the k-th moments of
the components of the vector v (P(a), QW (¢1))):

M| P(a), QW (EW)) = Mp (91G | P(2))}
+ Mo, (5 10V ED),

i=1m,j=1,s.

Similarly, define a vector m®)(j | P(a), QU (¢1))) using the k-means
of the components of the vector Mi(k)(j | P(a), QW (EWY):

1
m® (| P(@),Q;(ED)) = (Mp EG | @)+
(7, (EEG 10D

i=1m,j=1,s.




RML:-procedure- General Form of RMAIlgorithm

For learning quality assessment, here we introduce the entropy functional defined on
the PDF P(a) of the random parameters and on the PDF
Q&) = {QWED), .., 0® (&)Y} of the noises as follows:

P > o D (W)
HP@,0©)) = - [ Pzt da=y [ @) IS
j=1"%=J J

P°(a), QJ?({U‘)) denote the prior PDFs of the parameters and noises, respectively.

déw,

The entropy is aieasure of uncertaintylts maximization yields best solutions under
maximum uncertainty, which is connected with the random parameters of RPM and with
the measurement noises. The last property guarantees estimates under maximum
uncertain noises Therefore, the PDF estimates obtained by entropy maximization can be
interpreted asrobustones.

The RML-algorithm
H[P(a),Q($)] = max,
under the following conditions

a) normalization of PDF
[ P@da=1, [ @Easw =1, j=Ts
A gj

b) k-mean empirical balances

m® (| P(a), V() = y(), j=1s.




RML:-procedure for Dynamic RPM (2)

HIP(A), Q)] = Z J,, Pacamn o A "D
h= Pr(An J— % j

subject to

the normalization conditions of the PDFs

[ mavam=1,  h=TR[ qeMaP =1, j=T5
A gj

h

and the 1-mean empirical balances

2. L Pu(An); (An)dAy + f Q¢ ¢V ag" =y, j=1s.
h=1 "h =

P(A) = {Py(Ay), ..., Pr(Ag)} and Q(&) = {Q, ()W, ..., @ (§)®} are continuously differentiable.

Ph(A) and Q (EU)) 1,R; j = 1,s are the prior PDFs.




Structure of EntropyOptimal PDF

The RML algorithm is formulated in terms of a functional entropy-linear programming problem, which belongs to the
Lyapunov-type optimization problems. For such problems, optimality conditions can be obtained using the Lagrange functional

and multipliers. Since the RML-algorithm involves continuously differentiable PDFs, the variation of the Lagrange functional
can be defined via the Gateaux derivatives.

Define the Lagrange functional

LIP(A), Q)] = H[P(A), (D] + (L w(P(A)) +(V,q(Q(£))) + Z (69D, 200(P(A), Q(£)))-
j=1

The entropy-optimal and normalized PDFs take the form

where

dAy,

Pa(6) = | P(An)exp [—Z (09, v, (An))
Ap =1

Q(0) = _fsj QY EMexp[- %3, (89, 00)]deD, h=TR j=1s.

The empirical balance conditions




Applications




Learning collection [E

O

1
th=]: |eRrR"
O

“2-soft” classification implies the allocation of
documents among 2 classes with probabhility defined
by application of the RML-procedure.

There exist two collections of text documents, namely,
a learning collection E = {eq, ..., e;,} and a testing
collection T = {¢4, ..., ts}. The documents are marked
by their belonging to class 1 or to class 2.

The documents in both collections are described by
the vectors containing the weights of the words
(terms) in a given document. Weight admits many
interpretations and quantitative characterizations.

Hence there are two sets of vectors in corresponding
collections:

£={e®, .., e™),  T={®, . )

By assumption, these vectors have a same dimension,
thatis, (e®,t0)) € R™.




0={11),(21),..,(m1)}

y |081]|015| X |035

Recall that the documents are marked at this stage. And so, there
exists a learning sequence representing a sequence of pairs
0 =1{(11),(21), ...,(m, 1)} of length m, where the firstelement
is document number and the second element gives its class.
Transform it into a sequence of numbers from the interval [0,1],
where element position in the sequence stands for document
number. The “learning” vector y has values of components:

y={yW, .., ym™}
The numbers [1/2,1] and [0,1/2) mean document belonging to
class 1 or class 2, respectively:

z=1{121,..,1}

/| £ 1 &aA T A Olearrding $tage (I)

 Randomized Model (Decision Rule)

The randomized model (decision rule) is defined by a
random vector §(a) that depends on the random
parameters a of a single-layer neural network.

The independent components of the vector § (a), i.e.,
9 (a) = sigm ((e¥,a)), i=1m,
are generated by the transformer

1
sigm (x) = 1+ exp[—a(x—A4)]’
The values of sigm (x) from the interval [1/2,1] correspond to class 1,
while the values from the open interval [0,1/2) to class 2. The parameters
a={a,,...,a,} are independent interval-type.

There exists the joint probability density function P(a) = [Tr; P (ai)-

Since the parameters a are random with the PDF P(a), for each document
with number () we obtain an ensemble YD of random values from the
interval (0,1) . The mean values of the components are

My (@)= [, P(a)sigm ((e?,a))da.




RML-algorithm for the “2-soft” classification problem:

H[P(a)] = — j P(a) InP(a)da = max,

A
subject to
j P(a)da =1,
A
f P(a) sigm ((e®™,a))da =y, j=1m.
A

Introduce the Lagrange multipliers 8 = {64, ..., 0,,}. Then
according to RML-algorithm, entropy-optimal PDF of the decision
rule parameters take the form:

W a|o
raln =502,

where
W (a|8) = exp(—(6, y(a))),
P(6) = f exp[—(6, y(a)]da,

A
Lagrange multipliers 0 are defined by the system of balance

equations:

PO [ expl-@.y@P@da=y?,  j=Tm
A

/| £ 1 &aA T A Oledrrding $tag)F




The learning collection consist in 3 documents, each of which
is characterized by-dimension vector by four weights.

i egi) egi) egi) egi)
1 0.11 0.75 0.08 0.21
2 0.91 0.65 0.11 0.81
3 0.57 0.17 0.31 0.91

The randomized model has the parameters ¢ = 1.0 and A = 0. The
“learner” responses are y = {0.18; 0.81; 0.43}(y; < 0.5 corresponds
to class 2, y; = 0.5 to class 1). The parameters belong to the ranges

a; € [-10,10],i = 1,4. The Lagrange multipliers for the entropy-
optimal PDF are 8 = {3.2807; —3.5127; 1.6373}. For this learning
collection, the entropy-optimal function W*(a) takes the form

3 4 (_1)
W*(a) = exp (—Z e.-y.-(a)) yi(a) = (1 +exp(- ) e, ak)) .
i=1 k=1

Figure shows the two-dimensional section of this function under
az = 0.5;a4 = 0.5.

/| £ 1 &aA T A Oleadrrding $tagB)F

The learning collection consistin 3 documents, each of which
is characterized by 2-dimension vector by four weights. The
learning collection consists of three documents each described
by two weights (see the firsttwo columns in table). The values
of the parameters a, A and the intervals for the random
parameters a are the same as in the left example. The
Lagrange multipliers for the entropy-optimal PDF are

6 ={9.6316; —18.5996; 16.7502}.

For this learning collection, the entropy-optimal function
W*(a) takes the form

3
W*(a) = exp —Z 0;yi(@) |,
i=1
2 (_1)

yi@ =1+ exp(— Z e,gi).ak)

k=1
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